SIMPLIFYING RADICALS - Rationalizing the Denominator

For a number to be in SIMPLEST RADICAL FORM, two requirements must be met:

1. The radicand must have no perfect square factors, cubed factors,
$4^{\text {th }}$ roots, etc. (except the factor 1).
2. There must be no radicals in the denominator.

Let's write $\frac{3}{\sqrt{2}}$ in simplest radical form.
Multiply $\frac{3}{\sqrt{2}}$ by the denominator over itself, $\frac{\sqrt{2}}{\sqrt{2}}$. Identity Property of Multiplication

$$
\begin{array}{r}
\frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{\sqrt{4}}=\frac{3 \sqrt{2}}{2} \quad \text { *Make sure to that all radicals are simplified in } \\
\text { the final answer. }
\end{array}
$$

$\frac{3}{\sqrt{2}}$ in simplest radical form is $\frac{3 \sqrt{2}}{2}$.
Let'stry: Write the following numbers in simplest radical form.
l. $\frac{2}{\sqrt{3}}$
2. $\frac{3}{\sqrt{5}}$
3. $-\frac{5}{\sqrt{2}}$
4. $\frac{\sqrt{3}}{\sqrt{2}}$
5. $-\frac{3}{\sqrt{3}}$
b. $\frac{\sqrt{2}}{\sqrt{10}}$
7. $\frac{\sqrt{3}}{\sqrt{6}}$
8. $\frac{\sqrt{2}}{\sqrt{6}}$
9. $-\frac{\sqrt{20}}{\sqrt{45}}$
13. $\frac{2}{\sqrt{5}}$
14. $\frac{\sqrt{2}}{\sqrt{7}}$
15. $-\frac{4}{\sqrt{5}}$
16. $\frac{10}{\sqrt{4}}$
17. $\frac{\sqrt{3}}{\sqrt{15}}$
18. $\frac{3}{\sqrt{12}}$
19. $-\frac{5}{\sqrt{5}}$
20. $\frac{2}{\sqrt{24}}$
21. $\frac{\sqrt{2}}{\sqrt{128}}$

