SIMPLIFYING RADICALS - Rationalizing the Denominator

For a number to be in SIMPLEST RADICAL FORM, two requirements must be met:

- I. The radicand must have no perfect square factors, cubed factors, 4th roots, etc. (except the factor 1).
- 2. There must be no radicals in the denominator.

Let's write $\frac{3}{\sqrt{2}}$ in simplest radical form.

Multiply $\frac{3}{\sqrt{2}}$ by the denominator over itself, $\frac{\sqrt{2}}{\sqrt{2}}$. \blacktriangleleft Identity Property of Multiplication

$$\frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{3\sqrt{2}}{\sqrt{4}} = \frac{3\sqrt{2}}{2}$$

 $\frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{3\sqrt{2}}{\sqrt{4}} = \frac{3\sqrt{2}}{2}$ *Make sure to that all radicals are simplified in the final answer.

 $\frac{3}{\sqrt{2}}$ in simplest radical form is $\frac{3\sqrt{2}}{3}$.

Let's try: Write the following numbers in simplest radical form.

$$\frac{2}{\sqrt{3}}$$

2.
$$\frac{3}{\sqrt{5}}$$

3.
$$-\frac{5}{\sqrt{2}}$$

4.
$$\frac{\sqrt{3}}{\sqrt{2}}$$

5.
$$-\frac{3}{\sqrt{3}}$$

$$b. \frac{\sqrt{2}}{\sqrt{10}}$$

$$7. \ \frac{\sqrt{3}}{\sqrt{6}}$$

8.
$$\frac{\sqrt{2}}{\sqrt{6}}$$

$$9. - \frac{\sqrt{20}}{\sqrt{45}}$$

12	2
12.	$\sqrt{5}$

$$|4. \frac{\sqrt{2}}{\sqrt{7}}|$$

15.
$$-\frac{4}{\sqrt{5}}$$

$$6. \frac{10}{\sqrt{4}}$$

$$17. \ \frac{\sqrt{3}}{\sqrt{15}}$$

$$8. \frac{3}{\sqrt{12}}$$

$$|9. - \frac{5}{\sqrt{5}}|$$

20.
$$\frac{2}{\sqrt{24}}$$

21.
$$\frac{\sqrt{2}}{\sqrt{128}}$$